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ABSTRACT

In the preceding report of this series (Boeing document D1-82-0590)
the Eulerian equations for the precession and nutation of self-gravitating
deformable bodies have been set up, with coefficients expressible in terms

of the displacement components arising from deformation which may oscillate

with the time. The aim of the present report will be to derive an explicit

form of the equations which govern the deformations of self-gravitating

viscous bodies in an external field of force; and to solve them in the

particular case of a homogeneous compressible configuration of arbitrarily
high viscosity. A possession of such a solution then opens the way for the
evaluation of the coefficients of the generalized equations (4-38) - (4-40)
for the precession and nutation of deformable bodies, and to their eventual

solution.

An application of the results presented herewith to the physical
librations of the Moon, or the luni-solar precession and nutation of the

Earth will be given in subsequent reports of this series. The sections

(as well as equations) of the present report are numbered consecutively to

those of Report I.



V. DEFORMATION OF SELF-GRAVITATING VISCOUS FLUIDS IN EXTERNAL FIELD
OF FORCE: FUNDAMENTAL EQUATIONS

The fundamental equations in viscous fluid motion in Cartesian
coordinates have already been stated in Section II of our previous report
(hereafter referred to as Report I). In order to use them for studies
of the motions invoked by tides in self-gravitating systems--i.e.,
deformations of configurations which, in the absence of éxternal force
would be spherical in form--we find it expedient to change over from

rectangular coordinates x,y,z to spherical polar coordinates r,0,¢,

related with the former by

X = r cos ¢ sin 6,
y = r sin ¢ sin 6, (5-1)
zZ =71 cos 0.

If so, then--at a price of some loss of symmetry-—equations (2-1) -

(2-11) of Section II can be rewritten as

2,.2
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D . 1. - - —
Dt r T dr 39 2 96 rzsin 5 ¢
20 _ 2V cot @ aulsu A _
) 2 :l+28r|:8r 3} (5-2)
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L Llou[130, 9V ¥, 1 au[_1 53U, 5w
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where the polar velocity components U,V,W are related with the rectangular

velocities wu,v,w of Report I by

U=t =ucos ¢ sin 8 + v sin ¢ sin 6 + w cos 6, (5-5)
V=r16=ucos ¢ cos § +v sin ¢ cos § - w sin g, (5-6)
W= (r sin e)i =~y sin ¢ + v cos ¢ (5-7)

the operators

2
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and all other symbols possess the same meaning as in Section II of

Report I.

In order to study the displacements governed by the foregoing
system of equations, we shall hereafter assume that all three velocity-
components U,V,W of viscous motion are small enough for their squares
and cross-products to be negligible. Let, moreover, the pressure P,
density p, and gravitational potential { characterizing the internal

structure of our configuration be expressible as

P = PO(r) + P'(r,8,¢3t), (5-11)
p = po(r) +O'(r,6,¢;t), (5-12)
Q = Qo(r) + Q' (r,0,4;3t), (5-13)

where PO’ Po? and QO refer to the respective properties of our
configuration in its stationary (equilibrium) state; and P',p',Q' stand

for their changes brought about by motion with the velocity components

U,V,Ww.

In the state of equilibrium (when U =V =W = 0), equation (5-2)

reveals at once that

2P, ) 39, .
or PO or 8Pg>

(5-14)
where the gravitational acceleration

r
g =G n(r) _ 471G / 0 r2dr. (5-15)
r2 r2 0 0



I1f, moreover, we regard the coefficient p of viscosity to be a function
of r only, and assume that the primed functions P',p',Q' are-—~like the
velocity components U,V,W --small enough for their squares and cross-
products to be negligible, the fundamental equations (5-2) - (5-4) of

motion reduce to their linearized forms

1] 1
Da_U.=p§Q____3_P___gp'+%[v2(rU)_2A+£§AJ +2:«>_u[au_.a_],

ot or or 3 3r ar r 3
(5-16)
3V _1[ 30" 3" , w [ 22 U v
pat—r[p 36 ae}J’z[rv(V)"Lzae" 2
r sin 0
(5-17)
_2cos 8 W _ r3r] [V, 13V _V
2 39 3 e:]+'c)r[ar+r86 r]’
sin 6
W 1 30" P! | 2 . 2.2 U
P9t " r sin 6 [ 3¢ 3 ] + i (r"sin"6)V'W + 2 54
r sin 6
BV _ o Ll )8 )
+ 2 cos © 3¢ W+ 3 (rsin 9) ¢] (5-18)
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where we have dropped for simplicity--there should be no danger of
confusion--the zero subscript of Po*
Moreover, the equation (2-12) of continuity and the Poisson equation

(2-13) can be similarly linearized to yield

o' 30 - -
st U +tea =0 (5-19)




and

VIR = ~41Gp', (5-20)

respectively.

The foregoing equations (5-16) - (5-20) constitute a simultaneous
linear system of five relations between six dependent variables: U,V,W;
P',p' and Q'. In order to render this system determinate, an additional
relation between them must be sought; and this can be deduced from the
principle of the conservation of emergy. If, for this purpose, we assume
the changes in the state variables to be adiabatic, the respective equation

can be shown to assume the form

DP _ 2Dp -
Dt a Dt ° (5-21)
where
32=Y’§— (5-22)

denotes the square of the velocity of sound in the material characterized
by a ratio Yy of specific heats; and which for small changes in state can

be replaced by its linearized version

' oP ' 9p
3

which by use of (5-14) and (5-19) can be rewritten to assert that



3P’ 2
St ~r(gU - a a), (5-24)

. 2 . .
where zero subscripts of p and a have likewise been omitted.

VI. SPHEROIDAL DEFORMATIONS

In order to proceed further, let us hereafter assume that the
anticipated deformation of our configuration is spheroidal--which implies

that the velocity components U,V,W are constrained to be of the form

[ow}
[

u(r,t)Y§(e,¢>, (6-1)

i

v(r,t) _a_el s (6-2)

<3
]

i
R TCS Wt (6-3)
sin & 3¢ °

where u(r,t) as well as v(r,t) are functions of r and t only,
while the Y;(e,¢)'s are surface harmonics of index i and order 3,

obeying the differential equation

2
1 Y 1 3 . 3Y . ~ _
22t Sin 6 36 (Sin 03 + 30 + DY = 0. (6-4)
sin" 6 9¢

If, furthermore, we abbreviate

1l 3 2 . | v
r2 or (r'v) - 304 l)r =y (6-5)
and
1l 9 _u _ 6-6
r 9r (rv) T Z» ( )




it follows by insertion of (6-1) - (6-3) in (5-9) that

(6-7)

while the linearized equation (5-19) of continuity will assume the

form

' _ )L 32y - oses ov [ yi _ gyl -
and the energy equation (5-24) transforms into
. 2001 _ _2.d
Yol p(gu - a y)Yj a th. (6-9)
As a result
2 fap! 0o 2 (| vt
2 ‘ s +gpl lgf+3r (a’n) | ¥ (6-10)
and
_3_(_3_1".) ) 4 _§_(_3P') ) 4 -
sc\ap ) “ @B %5 Be\as ) T 3By (6-11)
On the other hand, an insertion of (6-1) - (6-3) on the right-hand
sides of equations (5-16) - (5-18) reveals that the viscous terms transform

into



gl - I aa dp U _ A
r IV (xU) 28 + 3 or + or | or 3,
= dv  dp du iG+Hd o2 3
lz [ ar dr 3r ] + r 3 9r (uy)]Y
= F(r,t>Y;(e,¢> (6-12)
while
2 23U _ v _ 2 cos 8 3W 1 3p
“‘VV“L 296~ 2. 2 2 .2 36 3rae]
T r sin 6 r sin 6
du | eV 1020 V| _ |13 -
+ or or + r 9 r r or (ruz) (6-13)
by 209y . oY . oY
T YTy (W) gy = Grt) 4y
and
2 2 U 2 cos 9 3V W 1 A
Pl VW A+ = S - + vy
r sinze 3¢ rzsinze 2¢ rzsinze 3t sin 6 3¢

ujaw 13U _w| _ aY _
+ or | ar * r sin 6 3¢ T G(r,t) 90 ° (6-14)
If, lastly, we set
an' i _
at = R(r:t)Yj(e’¢)’ (6 15)

a differentiation of the first fundamental equation (5-16) of motion
with respect to the time renders the latter to assume, for spheroidal

deformations, the explicit form




2
9 aR ) 2
p g = e s @h) +gf + 2T (6-16)
ot
while equations (5-17) and (5-18) similarly treated can both be

reduced to

IV _ 2 3G
pr_—pR+ah+at,

()

(6-17)

where the quantities f and h are defined by equations (6-8) and (6-9);

the viscous terms F and G by (6-12) and (6-13) and R, by (6-15).

The foregoing equations (6-16) and (6-17) constitute a simultaneous
set of partial differential equations for the unknown functions wu(r,t)
and v(r,t) introduced by (6-1) —l(6—3). Before, however, we solve for
them it is desirable to eliminate the potential function R(r,t) between

them; and this can be done in the following manner.

First, divide both sides of equation (6~17) by o, differentiate
with respect to r, and then eliminate 3R/3r between it and equation

(6-16): the outcome will assume the form
———(rz)+——|-—-—(-§)|+a2Ay=o, (6-18)

where y and z continue to be defined by (6-5) and (6-6), and where we

have abbreviated

_1lop 1 3P _
A= o or yP or °’ (6-19)

so that, by (5-14) and (5-22),
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2
]
aA=g+§p——Q. (6-20)

or
In order to obtain a second independent relation between u and
v which does not involve R, recourse must be had to the Poisson
equation (5-20). Differentiating the latter with respect to the time
and inserting from (6~15) we find that the radial part of 3Q'/3t should

satisfy the differential equation

32R 2
—ti
or

o;'cu
H |

]
-j@G+ 1D ‘%‘= -47G %§?'= 4nGE (6-21)
r

by (6~8). Now multiply (6-16) by r2/p and differentiate with respect

to r: the result will be

2 2 2
2 (28R) 2 fo 2. _ a|rils 2 _alaf=tF
3r<r 3r> 'atz{ar (x “)} Br[ o [ar (ah+gf)” 8t{3r< o )l’

(6-22)
which inserted in (6-21) together with (6~17) reveals that
2 2 2
B _ogner + 2 2 2yt g L2 jref
293r| p or 2 3r p
ot r
(6-23)
2 2
i3t a BUNEES BN (6 2 N
2 o) + 2 3t | ar p 3G l)p
T r
where, it may be remembered,
- L 9 .2 -
4nGp = r2 P (r’g) (6-24)

by (5-15).
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If we eventually insert for F and G from (6-12) and (6-13),
our fundamental simultaneous equations (6-18) and (6-23) for u and v

will assume the more explicit forms

2

2
—a—'(rz) + asz -1
ot P

_4(p3p
3 <p 3r>yl (6-25)

and

2 2
_272 (rzy) - 4nGr2f - j%_{l;_[_é_ (azh) + gf} +

- iiiill.[z(u-v) %% + %-%% (urz)]].

The foregoing system (6-25) - (6-26) of two simultaneous linear
differential equations for u and v is evidently ome of fourth order
in t, and of sixth order in r. If viscosity u were absent, the

right-hand sides of both (6-25) and (6-26) would vanish identically;
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and their left-hand sides equated to zero would constitute equations each

of which would be of second order with respect to the time. However, (6-25)
so truncated would reduce to a first-order equation with respect to r;
while (6-25) would remain one of third order in the spatial variable. The
appearance of even a constant viscosity u would raise the order

of (6-25) from one to three; but the order of (6-26) would remain unaltered.

VII. BOUNDARY CONDITIONS

Before we can proceed with the solution of the equations established
in the preceding section, let us specify the boundary conditions -which such
solutions will be called upon to satisfy. Since our general system (6-25) -
(6~26) has proved to be one of sixth order, six boundary conditiohs are
obviously necessary for a complete specification of a desired particular

solution; and in what follows we shall enumerate these in turn.

First, the obvious requirement that there be no displacement at the

center necessitates that

u(0,t) = v(0,t) =0 (7-1)

at all times.

Next, let us require that there be no variation in pressure at the
center (r = 0) and over the distorted surface (r = r*). The vanishing
of 3P'/dt as given by (6-9) at the center will obviously be fulfilled

if, in addition to u(0,t) = 0, also

while on the surface, where

) =0 (7-3)

’

p(r,) = P(r,
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the vanishing on the right-hand side of equation (6-9) is automatically

satisfied provided only that u(r*) remains bounded.
It is of interest to note that if, in addition to (7-2),
lim ¥ = (él’-) =0 (7-4)
r dr 0
-0

the linearized equation (6-8) of continuity ensures that there will also

be no variation of density at the center as well.

At the boundary r = r, of a self-gravitating configuration of
viscous fluid we may require the vanishing of the radial viscous stress

components
= g =g = 0. (7—5)
The explicit forms of the six components oij of viscous stresses in

Cartesian coordinates have already been given by equations (2-5) - (2-10)

of Report I. Rewriting these in spherical polar coordinates we find that

U [su) i _
0rr_“Z)r_u(ar)Yj’ (7-6)
_ |13y 3V _¥ v, u=v | Y )
g - uI r 96 + dr r I o Y r 98’ (7-7)

e L T e

Or¢ " ¥l tsin o 9¢ ar T
(7-8)

v, u-v I 1 3y

or r sin 6 3¢
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by (6-1) - (6-3); so that all three radial components of the viscous

stress tensor will vanish on the surface provided that

(2) - o

and

= — (7-10)

The last type of the boundary conditions which we must investigate
consists of the requirement that the total gravitational potential and
its normal derivative (i.e., gravitational acceleration) must be continuous
across the free boundary of the distorted configuration; and this can be

enforced in the following manner.

Let the total potential W of all forces acting upon any point of

our configuration be expressed as the sum

W=2a+ VT’ (7-11)
where § denotes (as before) the potential arising from the mass of the

respective body, and

VT=zCi

(£)rivi(e, ) (7-12)
iy J

*
stands for a potential of the forces causing the distortion (such as the
attraction of external masses, for instance), specified by a set of the

f tions C t).
unc i,j( )




~15-

The total potential W must obviously satisfy the Poisson

equation

VW = -47Gp. (7-13)

If, moreover, the potential Q arising from the mass and the internal

distribution of density p are likewise expansible in the form

Q= z 2; i (x t)Y (6, 4) (7-14)
iyt
and
p = z g; (r t)Y (6,4), (7-15)
i 3

where the Y;'s are surface harmonics satisfying equation (6~4) and
521 j(r,t), g& j(r,t) are functions as yet unspecified, it follows from
bl b4

(7-14) and (7-15) that equation (7-13) can be expressed more explicitly

in the form

2
[ 3 2 9 i(i+1\| o PN
l arz + iy r2 SPi,j = —4nus&’j. (7-16)

This linear nonhomogeneous equation for R can, in turn, be shown
(by standard methods) to admit of the solution
j+ 2

_ i, 4nG_
2, 40 = ¢, (o)r) + 71

Ci,3 23+1 J+1 / j(r.0r

rj j; gg’j(r,t)rl-jdr },

(7-17)
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the particular integral of which consists of a sum of the interior and
exterior potential arising from the mass itself, and the complementary
function represents the disturbing potential (7-12). The reader may note
that, for j = 0 (i.e., in the case of spherical symmetry), the foregoing

equation (7-17) reduces to

r

SPO = Q%Q jﬂ przdr + 4nG ]ﬂ ordr + a constant, (7-18)
0 r

which makes the nature of this solution obvious. Moreover, the infinite
upper limit in the second interval on the right-hand side of (7-17) or

(7-18) can be replaced by the mean radius r, of the respective

*

configuration without altering the value of the respective integral; since
p(r z_r*) = 0.

Let us differentiate now the equation (7-~17) with respect to r:

in doing so we find that

r
A2 _ L. 3-1 . 4nG | _ i+l / 342
ar - 3Tt o541 42 gr- “dr
r 0
(7-19)
371 [ T* g 1]
+ jr ]~ Ir- “drl,
r
which combined with (7-17) yields
. S s
2.5 - epned™T v aed [ Mot e (7-20)

r
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for any value of i and j; and at the surface of our configuration

(i.e., for r = r*) equation (7-20) reduces further to

= (25 + Dord L, (7-21)

*

ar r

r=r

Let us next differentiate the foregoing relation with respect to

the time. Since, by a comparison of (7-14) with (6-15) it follows that
0
YS 2 (r,t) = R(r,t), (7-22)

the boundary condition (7-21) can at once be rewritten to assert that

3 i+1 € 41
‘Sz-R(r,t)'r=r + x, R(r*,t) = (25 + 1) 5t Tx o (7-23)
%

where the surface values of R and 9R/3r can be inserted from (6-16)

and (6-17) in terms of the local values of u and v which, in turn, are

>constrained by the condition (7-5) to satisfy the equations (7-9) and

(7-10).

The question can be raised, in this connection, as to the boundary
condition which the function R(r,t) must satisfy at the center r =0
of our configuration. In order to ascertain its form, let us return to
equation (7-17), divide its both sides by rj, and differentiate with

respect to r: the outcome of these operations discloses that

r .
2(2) - - [ e (7-24)
ot rd r23+2 0
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Differentiate now again both sides of this equation with respect to

t: inasmuch as

IQ

= -f(r,t), (7-25)

@
[nd

where the function f{ has already been defined in terms of u and v

by equation (6-8), it follows from (7-22) and (7-24) - (7-25) that

3R _ _ i*+2y -
r B e ]+1 f £(r,t)r (7-26)
Since
T 2
) j+2 o qam IX o _
1lim ¥s] /ﬁ f(r,t)r dr lim E;E' 0, (7-27)
T 0
r >0 r >0
it follows from (7-26) that
R(0,t) = 0, (7-28)

which together with (7-23) represents the boundary conditions imposed on

the acceptable solutions of equation (6-21).

The reader may note that, in the absence of any external disturbing
forces which depend on the time, the boundary conditions (7-23) as well as
(7-28) are homogeneous in R, just as equation (6-21) itself is
homogeneous in its dependent variables. Should this be the case, the

solutions of our equations of Section VI would correspond, e.g., to free
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spheroidal oscillations of compressible self-gravitating configurations

of viscous fluid with air arbitrary amplitude. However, the physical
librations of the Moon (or the tidal phenomena in general) belong to the
category of forced oscillations, with amplitudes governed by disturbing
forces of external origin, the magnitude of which depends on the time.
Since the solution of our problem of lunar librations depends on the
nature of the attraction exerted on the globe of the Moon by the Earth

and the Sun, as determined by the disturbing potential VT’ the time
dependence of the quantities Ci,j(t) in (7-12) will have to be
investigated. Before doing so we wish, however, to consider a possibility
of resonance between free and forced oscillations in the Earth-Moon system;
and to this task we shall address ourselves in the next three sections of

this report.

VIII. SOLUTION FOR HOMOGENEOUS BODIES: FREE OSCILLATIONS

In Sections V - VII the equations have been set up which should govern

spheroidal oscillations--free or forced--of self-gravitating configurations

Fh
4
-
-
o
<

of viscous fluid, o
a particular case. The aim of the present section will be to particularize
our problem in one more respect to facilitate applications to the Moon:
namely, in taking advantage of the fact that a self-gravitating globe of

so small a mass can be expected to be so nearly homogeneous that po(r) in
its interior can, to a good approximation, be regarded as constant. The
physical reasons why this should be so have been explained elsewhere

(cf., e.g., Kopal, 1966; Chapter VII) and need not be repeated in this
place. They entitle us, however, to conclude that, throughout most part of

the lunar interior, the assumptions Py = constant and (though to a lesser
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degree) u = constant

should represent good approximations.

Moreover,

their adoption will prove to simplify the solution of our equations of

Section VI to such an extent that
a closed form in terms of certain

proceed to construct.

To begin with, let us change

variables r,t of our problem to

x,T7 defined by the equations

the underlying problem can be solved in

hypergeometric series which we shall now

over from the physical independent

the corresponding nondimensional variables

T = I.X,
(8-1)
T
t=—,
VZnGpO
normalized so that
0<x <1 (8-2)

between the center and the surface

for constant o

of our configuration. If so, then

equation (5-14) can be readily integrated to

_2 22, 2 i
PO =3 nGpOr*(l x ), (8-3)
while (5-15) yields
= - 8—4
g 3 nGpOr*X ( )
and from (5-22) combined with (8-3),
2 _ 2 2 -
a~ = 3 nGpOr*y(l—x ). (8-5)
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Moreover, in accordance with (6-19),

A= EZX_T s (8-6)
v, (1-x7)
so that (6-20) assumes the form
2 4
a"A = 3 Gpor*x; (8~7)
and, lastly, by (6-8) and (6-9)
4 2 -~
gf = 3 nGpOxy (8-8)
and
2 2 2 2~
a’h = S'ﬂGpor*{y(l—x )y - 2xu}, (8-9)
where we have abbreviated
y=r,y and z = r.z. (8-10)

If so, the system (6-25) - (6-26) of our fundamental equations of

motion can, for constant yu, be rewritten as

2. 2 . /e

38y _ ax, 1 3 3 B .29 _idH) b x 4o -

2 2= WA TGy Gy 4 [ 7 % % 7 [ 7 (1x7)y - xu
9T X X x

2 /s
[.@.2_+.}_2(.i_.]_£.]+_ll]§,, (8—11)

and



2~ 2
3 ~ 3 3 P 2 3 i+ | -
= 2= g = = Lo 9 < 2 -
2 2TV TV T2 ax 2 ] Zs (8-12)
aT 90X X
where
Y S | R
L= é (8-13)
por*VZNGpo

stands for a nondimensional constant parameter proportional to the viscosity.

Let us disregard at first the terms factored by y  in the foregoing

equations (8-11) - (8-12) and--anticipating the motion governed by them to be

harmonic--set

iiz-= -2, (8-14)

where v stands for the (normalized) frequency of the respective motion.

If so, the system (8-11) - (8-12) obviously reduces to

2
9 2.3 _ j(i+1) X o1_w2\
2 v X ox 2 [ 7y (=xD)y X“]
oxX X
(8-15)
B, (2 4 6)5 o
+ x % + (v + 6)y 0
and
5 = 9%, (8-16)
respectively.

The foregoing equations (8-15) and (8~16) constitute a fourth-order
simultaneous system for the velocity components u and v. However, in

this particular case of a homogeneous configuration, their integration
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can be split up in two stages. First, let us note that, by virtue of

equations (6-5) - (6-6) and (8-16),

2
8,28 iGH) 19 . 2= iG+y. - -
X 29X v
which on insertion in (8-15) yields
2 2. %3 2, 9y 2
X (1-x)—lz+2x(1—3x)5§-+[1<x - iG+H)1y =0 (8-18)
X
where we have abbreviated
K=%‘\32+4-l§{;—1)— + G -3+ ). (8-19)
v

The foregoing relation (8-17) constitutes a second-order differential
equation for y which can be integrated as it stands; and once its solution
has been obtained, the velocity components u and v can be solved for
from the equations

~ Ju 2u

Lo V_~2]|3v  v-uj _
Y= T % (G + l)x v | x T x | (8-20)

resulting from (8-10) and (8-16).

Let us, however, return now to equation (8-18). 1If we substitute

X2 = ¢, the latter can be rewritten as

2~ ~
e2e - DEL 183 Ty L {504 - xel§ = 0, (8-21)
€
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and its complete primitive can be expressed as a linear combination of

two hypergeometric series of the form
~ 3 2 -j-1 2
v = Ax“F(a,b,c,x”) + Bx F(a~c+1l,b-c+1l,2-c,x"), (8-22)

where A,B are arbitrary integration constants, and

a=Y%[2j + 5 & V25+4K],
b = %{2j + 5 F ¥25+4K], (8-23)
c=3j+ %—.

The finiteness of y as given by equation (8-22) at the origin

obviously requires that B = 0. Moreover, inasmuch as, by (8-23),

a+b-c¢=1, (8-24)

an application of standard tests for the convergence of hypergéometric

series discloses that both series on the right-hand side of (8-22) diverge

for x = 1. The solution (8-22) for y expressed in their terms can,
therefore, remain finite at the boundary only if the respective hypergeometric

series are made to terminate by setting (say)

{23 + 5 ¥ Y25+4K } = -k, (8~25)
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where k stands for an arbitary positive integer. Since, however, then

N |

a=j+k+ and b = -k, (8-26)

the particular solution of (8-21) which remain finite for 0 <x <1

assumes the form

~ h 3 o5 432
y Aj,kx FGG+ k+ 2 k,j + 2,x )
(8-27)
_ j . 5. 3.2
Aj,kx Gk<J + Z’J + zsx )

where Gk denotes the corresponding Jacobi polynomial of degree k.

Moreover, equation (8-25) implies that
(25 + 4k + 5)2 = 25 + 4K, . (8-28)

which on insertion for K from (8-19) and after some rearrangement of

terms assumes the form

\;2+4_J-(i’2“_1l=y(k+1)(2j+2k+3); (8-29)
v

and the frequency of the corresponding oscillation will be given by
W =t YPh (54D (8-30)

where we have abbreviated
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w = vk + 1) +k+%) - 2. (8-31)

For j > 0, one of the conjugate roots of (8-29) is bound to be
negative--implying dynamical instability. If « (i.e., k) 1is large,

the conjugate roots (8-30) will be led by the terms

2 =g+ K o S ACED (8-32)

Thus, for any given j, the requirement that y be finite throughout
the interval 0 < x <1 leads to two types of the spectra: one consist-
ing of positive eigenvalues tending towards infinity as k increases;

the other of negative eigenvalues tending towards zero.

With the explicit form of y as given by (8-27), the equations

(8-20) for u and v assume the explicit form

XLZ = x?u) - j(j+1)xv’ = %(2—!5% (xv) - u
(8-33)
= Aj,kij(a,b,c,xz),
where, as before,
a=3j+<+k,
b = -k, (8-34)

and can be integrated to furnish polynomial solutions for u and v

in the following manner.
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First, we note that an elimination of =xv between the first two
parts of the equation (8-33) yields a relation of the form

2 . L .
2 k%) - 3G + Du = A, | @ IRy ¢ TAED SHLEE g g
BXZ J ,k X {')2

with F = F(a,b,c,xz); and its particular integral which remains finite

at the origin becomes

A, . . X
u, ,(x) = L.k lj[l + lil']xj 1 ]ﬂ xFdx
3.k 32 0

2§+1
(8-36)
. . X .
+ g+l -S]77 0 0 e
v 0
Since, moreover,
2y el 9 ol 4 i1 et o2 -
xF(a,b,c,x") = 2(a-1) (b-1) 3x F(a-1,b-1,c-1,x") (8-37)
and
: i+ 2
@i + Hx" I Pr@,b,c,xh) = 2 |2 @,b 011,50 (8-38)

the integrals on the right-hand side of (8-36) can be evaluated in a

closed form to yield

j-1
Aj,kx

G+ 1) - ¥2)F(a-1,b-1,c,x%)
4(a-1) (b-1)v

uj,k(x) = 2
(8-39)

+ 2(c - 1)3%F(a~1,b-1,c-1,x%) - §(§ + v + 1)

where advantage has been taken of the identity
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2 2, _ _c(c-1 1 el a1 W2y 1 1 2
x F(a,b,cl,x7) = NGy | Falb-le-1,x7) = F(a-1,b-1,c,x7) .
(8-40)
The arguments b - 1 = -(k + 1) in both hypergeometric series

on the right-hand side of (8-39) are negative integers; hence, both

series are terminating and can be expressed in terms of the Jacobi

polynomials
2, - . 1, 3.2 _
F(a~-1,b-1,c,x") = Gk+1(J + 223 + 5% ) (8-41)
and
2, _ . 1. 1l 2 _
F(a-1,b-1,c-1,x") & Gk+l(J + 52 J + 5% ) (8-42)
of degrees 2(k + 1) in x. Moreover, inasmuch as
. . ~2 . . ~2
G+DGE -Vv)+2(c-1)=3G+v+1), (8-43)
the leading term of the polynomial expression (8-39) will be
x) = A 1(i+1) + (1+2)\32 xj+1 (8-44)
“,0 3,0 '

2(24+3)5°

With a polynomial solution for u thus established, that for v
follows algebraically from an inequality of the first and third term of

the equation (8-33), disclosing that

o 1
j(G + v = x

é% x%u) - 3 (a,b,c,x%). (8-45)
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Inserting in (8-45) for u from (8-39) we find that

A, ka—l 9
v, k(x) = L. 2 2(c-1)F(a-1,b-1,c-1,x")
I 4(a-1) (b-1)7
(8-46)
+ (3% = §HF(a-1,b-1,¢,%%) - (§ + 32 + 1)
which for k = 0 reduces again to
'+\32+3 i+1
v, @) = A, R T (8-47)
I 327 2(25+3)%

The foregoing equations (8-27) with (8-39) and (8-46) represent
closed polynomial solutions for free nonradial oscillations of order j

and mode k of a homogeneous configuration of compressible inviscid

fluid, with characteristic frequencies v as given by equations (8-29)
or (3-30). By virtue of (8-14), these solutions are to be multiplied

by a harmonic time-factor exp i(v, ,) of the respective oscillation;

jsk

and their arbitrary linear combination

i(v, 1
u®,t) = 2, u, (xe I’ (8-48)
£ jk
i,k
or
i(v, k)T
v(x,1) = z v, k(X)e s (8-49)
ik I

then represent complete solutions of the problem set forth in this

section.
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IX. THE EFFECTS OF VISCOSITY

Throughout most part of the preceding section we have regarded
our configuration to consist of inviscid fluid--a simplifying assumption
which enabled us temporarily to ignore the effects of the operator
1(3/3t) on the right-hand sides of equations (8-11) and (8-12). The
aim of the present section will be now to restore these terms and proceed
to construct such solutions of equations (8-11) and (8-12) which take the

effects of constant viscosity duly into account.

The principal new feature of this problem which distinguishes it
from the one treated in the preceding section is the fact that, for

harmonic motion,

= = 13 (9-1)

in consequence of which the right-hand sides of equations (8-11) and (8-12)
become complex; and their solutions must be sought in terms of complex
velocity components u(x,t) and v(x,t) of the form

}e(K+i>\)T

u(x,t) = {ul(x) + iﬁuz(x) (9-2)

and

(k+id) T

v(x,T) = {vl(x) + iﬁvz(x)}e (9-3)

where vy 2(x), vy 2(x) are real functions of x and «k,A are real
’ b

constants. As 3 - 0, the functions ul(x) and vl(x) should, moreover,
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tend to the limits represented by equations (8-34) and (8-35); but the

new functions uz(x) and vz(x) arising when 1 + 0 remain yet to be
defined and solved for. This can be done by a method initiated by the
present writer (cf. Kopal, 1964) for the case of purely radial oscillations
(j = 0), and extended by Moutsoulas (1967) to nonradial oscillations,
which are of primary interest to us in the present report, in a manner

to be developed in this section.

In embarking on this task, consider first the complex frequency
k + 1A of harmonic oscillations in (9-2) and (9-3), the real part of
which represents the rate of damping of the oscillatory motion, due to a
viscous dissipation of kinetic energy into heat. As, however, the viscous
dissipation function is known to be homogeneous and quadratic in the velocity
components u and v, its magnitude becomes ignorable within the framework
of our linearized theory initiated in Section V; and, hence, consistent with

our scheme of approximation «k can hereafter be neglected.

Next, as a consequence of (9-2) and (9-3), the normalized quantities

y and z should likewise be expressible as complex functions

5,1 = {y, () + iy, (0}t (9-4)

2(x,7) = {z,(x) + iﬁzz(X)}ei)‘T, (9-5)

where, in accordance with (6-5) - (6~6) and (8-10),

Ju

1,2 . /e
= —_—t - + 1 9-6
xy1,2 X ox + 2ul,2 13 )vl,2 ( )

and
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v
Xz = x 1.2 + v - u

1,2 3% 1,2~ Y1,2° (9-7)

If we insert the foregoing complex expressions for u, v, and ¥
in (8-11), and separate the real and imaginary parts we find that (8-11)

splits up into the following symmetrical pair of simultaneous differential

equations

3y 2 /e
2 1,2 9 2 9 _ 1(j+1) 2 _
3(4 + A )yl’2 + 2x + [ + 3 ] [Y(l X )yl,2 2xul,2

ax aX2 ax X2
2
2,00 8% . 2 3 _ i(i+l) )
* 2 \p [3X2 + - x X2 ] y2’1. (9-8)

Equations (9-6) and (9-7) reveal that

—

3

2
B 2.3 _iG+HD 19 2 s (4 -
[ 2t % ](Xul,Z) X ox Xyp ) F 30+ Dz 5 (9-9)

2
S .23 iy _ G2 =
[ 7 T X% ](l XYy

ax 2
90X X
(9-10)
2 2 2
.2y 8 1-3x"\ 3 _ G+ (A-x") _
= [(l x7) 2 2< X ) 3% 2 617,20
X b'e
which inserted in (9-8) permit us to rewrite the latter as
a2y 2\ ay § (§+1)
2 1,2 1-3x 1,2 2 3.2 ] i (i+1
- 2 2. -_ -— + Y - - =
(1 - x") o+ 2< ” > e T Y(4+2>\) (j=2) (3+3) 7 1,2
90X X
2 (9-11)
_2 A2,0) 37 23 _ i(i+1)
=y 1@ Az, e 20 [ax2 R ] 2,1




-33-

constituting two relations between the unknown functions ) and
b
IWE The remaining two can, in turn, be obtained by an insertion of
, .
(9-5) in (8-12): 1in doing so and separating the real and imaginary

parts we find them to assume the forms

2 T % ox 2 27,17

2 s
2 =%z, 250 [-—-—3 2.2 104D (9-12)
ox X

which together with (9-11) represent the fundamental system of differential
equations governing the oscillations of self-gravitating configurations of

viscous fluid; for once these have been solved for and z the

Y1,2 1,2°

corresponding velocity components Uy, and vy o can be determined from
bl b

(9-6) - (9-7).

It is of interest to note that thesc cquations are quadratic in o --
a fact which underlines the importance of the terms introduced by viscosity.
If {4 -> 0, only the functions with subscript 1 remain relevant to the
problem; and a combination of equations (9-11) and (9-12) reduces then to

Y1 =y and z, = 5_2y, with y as previously given by (8-18), and X = v.

1
If, on the other hand, {i - «, the relevant solutions for Yy and z,
which remain finite at the origin will both vary as xj and can differ
only in their multiplicative constants; the same being true of u, and Vo
which vary as {x?f;;A

FANS N tog o :
e e VORATID D .
t vv,\vlj., : Ve

For finite values of i, ééﬁatibns (9-11) = 7(9-12) must be treated

as a simultaneous system governlng four unknown functlons (x ) and

y12

¢

2(x), a solutlon of Wthh may also be approached by successive

approx1mat10nsﬂ For 1nsert for’ 2inér from (9 12) in’ (9 11) outcome
.. R s

[ . 3 . . T
Sbo Deoirnt Aeirnya anele R TN N
N . S R L R : PR IR I R

discloses that
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X

2
3y 2\ 3y .
A - x2) ;,2 ‘s <l—3x > 1,2 , ‘K i3+

(9-13)

N A-2000% 25 gaen]lz2. ..
t 2 [ *t X % 2 ] [4 JG+zy o yl,Z]

where the constant K continues to be given by (8-19). 1In consequence,

the relation

2

3y 2\ 9y .
2 2 1-3 2 +
R S e EE wean el s P
X X
(9-14)
2
o Al 28 G2 ..
=27 [ 27X ax 2 ] [4 3Gz + yl]

3 X

becomes independent of viscosity; and the operator on its left-hand
side is identical with that of equation (8-18). If the right-hand side
of the foregoing equation (9-14) we set equal to zero, the complete
primitive of the homogeneous equation for Yo would indeed be of the
form (8-18). 1If, moreover, we approximate the functions on the right-
hand side of (9-14) by polynomial expressions of the form (8-27), the
particular integral of the complete nonhomogeneous equation (9-14) for
(y2)O can be obtained by standard method; and the corresponding

expression for (zz)O then follows from (9-12) algebraically as

2
-2 1y 2.8 _ i(i+l) -
(z9) = 12 3o - 2 2 t X % 2 ]<Zl)0’ (9-15)

.2
where, by (8-16), (zl)O = A (yl)o'

As the next step of our approximation procedure, we revert to the

second one of the equations (9-11) in the form
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Bzy 2\ 3y
(l—-xz) 21+2<l—3x> 81+‘K_]§]+12
9% X X

(9-16)
2

_,a2f 2t 2 aan]fz .,

"ZY“{ > ¥ % ox 2 H43(3+1)22+yz]’

X X
where Yo and z, on the right-hand side can be inserted from the

solutions of (9-14) and (9-15); and (9-16) regarded as a nonhomogeneous

equation for a second approximation to (yl)lg and

1 o T2 Tk ow 7 | (Z2)0- (9-17)
X X

The same procedure can obviously be continued until the expressions for

(yl,2)1+l or (21,2)i+1 cease to differ from (yl,Z); or (21,2); by

significant amounts.

Suppose that such stabilized solutions for and z have

1,2 1,2

been established; and from these the velocity components and v

“1,2 1,2
with the aid of (9-2) and (9-3). The complex velocity components u(x,t)

and v(x,t) then follow by insertion of and v in (9-2) - (9-3);

Y1,2 1,2

and their real parts--which are of interest in connection with our physical

problem—-should be of the form

)

Relu(x,1)] ;

=

TV uc+us cos {AT + tan_lﬂ(uz/ul)} (9-18)

and, similarly,

Re[v(x,7)] = eV v2+v? cos {xt + tan_lﬂ(vz/vl)}, (9-19)

2
172
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whose amplitudes

»/ui(X) + ug(X), /Vi(X) + vg(X)

are identical with the moduli of the respective complex velocity

components, while the angles

e = tan'la(uz/ul) (9-20)

and

tan—lﬂ(vz/vl) (9-21)

™
il

represent their phase lag.

It is evident from the expressions (9-18) and (9-19) that the
phase with which a self-gravitating configuration of a viscous fluid can
oscillate-—freely or in response to an external field of force--is bound
to vary between the center and the surface of our configuration. The
respective motion represents, therefore, a travelling rather than a
standing wave. Only inviscid configurations can oscillate with constant
phase; and the latter is bound to become a function of r as soon as
L > 0. Moreover, our results make it evident that the amount by which
the oscillations-—-free or forced--will lag in phase may be different for
different velocity components. In particular, in the case of spheroidal
symmetry represented by equations (6-1) - (6-3), the phase lag in the radial

velocity component U will be different from that in the angular velocity

components V and W.
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In conclusion of the present section the following question can
be asked how large is the nondimensional viscosity parameter y 1likely

to be for the Moon? Since, in this case, our unit of length r,

(identical with the Moon's mean radius) is equal to 1738 km = 1.738 x 108cm;

and our unit of the time (ZnGpO) = 845 sec for

N

Py = 3.34 g/cm3 and

G = 6.68 x 10—8cm3/g secz, it follows from (8-13) that

i=1.68 x 10714, (9-22)

where 1 1is expressed in g/cm sec. This magnitude of 1 makes it
obvious that for u << 1014g/cm sec, the quantity 1§ can be, throughout
Section IX, regarded as a small parameter, and its effects treated as
perturbations of the inviscid case discussed in Section VIII. If, however,
u >> lOng/cm sec, the viscosity effects in our equations of motion will
tend to become dominant; and their solutions should asymptotically approach
their limiting forms (x) ~ xj+l.

x) ~v In such a case, the angles

Y1,2 1,2

¢ of phase lag will tend to become constant and the dynamical behavior of
our configuration will approach~--as it should--that of a rigid body. In
such a case, it is the reciprocal of L which can be treated as a small
parameter in our equations of motion; and the perturbations caused by it
will measure the departures of the behavior of our configuration from that

appropriate for a rigid body.
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X. TFORCED OSCILLATIONS: DISTURBING POTENTIAL

The solution of the vibrational problem of self-gravitating
configurations of a homogeneous but compressible viscous fluid of arbitrary
viscosity, as given in the preceding section, applies to small oscillations
of any kind--whatever their origin--be they free or forced. In the former
case, the underlying differential equations are homogeneous, and the
amplitudes of the oscillatory motions governed by them are arbitrary
(though small enough for their squares and higher powers to be negligible);
but the characteristic frequencies of oscillation are limited to a discrete
spectrum defined by equation (8-30) in the inviscid case, and its

generalization in Section IX when viscosity is taken in account.

However, inasmuch as the fundamental equations (8-11) and back to
(6-25) - (6-26) for heterogeneous configurations—-were obtained by an

elimination of the gravitational potential R between (6-16) and (6-17)

with the aid of (6-21), it follows that the same equations must also equally

control all forced oscillations of our configurations—-such as, for instance,

the librations of the lunar globe, or all bodily lives raised by an external

field of force. Moreover, their solutions must likewise be expressible by
means of the characteristic functions which specify free oscillations in
terms of general series of the form (8-48) and (8-49), provided only that
none of the characteristic frequencies v or A of free oscillations
coincide with the frequency of the disturbing external force. The
characteristic frequencies of free oscillations can be determined by

imposing the boundary conditions discussed in Section VII on differential

equations set up in Sections VIII and IX; but the periods of forced
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oscillations impressed by external forces have not so far made their
appearance in this report. The aim of the present section will be to

deduce them from the structure of the disturbing potential.

In order to specify, quite generally, the nature of the attraction
exerted by an external mass m' at a distance A from the center of

gravity of our configuration, let

A' = cos ¢ sin @,
u' = sin ¢ sin 6, (10-1)
v' = cos 8,

denote the direction cosines of an arbitrary radius-vector t in the

rotating body axes (cf. Section 1II), and

A" = cos u cos @ - sin u sin Q cos I,
1" = cos u sin @ + sin u cos @ cos I, (10-2)
v' = sin u sin I,

be the direction cosines, in the space axes, of the radius-vector A

joining t ers of mass of the two bodies, where I denotes the

inclination of the orbital plane of the disturbing body to the

equatorial plane x'y' of the distorted configuration; and u, the
1]

true longitude of the mass m' from the longitude § of the ascending

node in which the equatorial and orbital planes intersect.

If so then, as is well known, the attractive force of mass m'

on our configuration will derive from the disturbing potential
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Gm'r2
VT = 3 P2(cos Q) +eee (10-3)

A

where
cos © = A"A" + u'u" + V' (10-4)

so that, by the addition theorem for spherical harmonics,

= 1 " ; G-K: k. oK -
Pj(cos 0) Pj(v )Pj(v Y + 2 Z Grio Pj(v )Pj(v Ycos k(¢ P,
(10-5)

where
-1
p =+ tan “(cos I tan u). (10-6)
In consequence, by rewriting the circular functions involved on

the right-hand side of (10-5) in terms of imaginary exponentials, we

find that, for j = 2,

PZ(COS Q) = --% Yg(e){Pg(q) - %’Pg(q)eiZiu}
B '1% Yé(e"b){qutm - (L) (1) FH 20 g2
+—913 Y§(9’¢){2(1—q2)ei219 + (l+q)ZetZi(Q+u) + (l_q)ZetZi(Q-u)}’

(10-7)

where
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e = Y,
¥,(0,) = e e (v, (10-8)
Y§(6,¢) = e+2mP§(v);
0, _ 1.2 _
Po(v) = 5(3v° - 1),
P%(\)) = -3v /109y, (10-9)
PI(v) = 31 - v9);

i = V-1 denotes the imaginary unit; and
g = cos 1. (10-10)

It is, furthermore, obvious that expressions analogous to (10-7) can be
constructed for any solid harmonic Pj(cos ©) that may occur on the
right-hand side of equation (10-3) of any order; but the requisite algebra
becomes progressively more complicated and may be left as an exercise for

the interested reader.

On insertion of (10-7) in (10-3) the latter can evidently be

identified with an expansion of the form (7-12), where

\ .
C. (t) = - & |1 _3a+ eﬂlu)sinzll, (10-11)
0,2 3 2
2A
1 . . Q
C (&) = -1 QEL'I[eilQ - eil( +2u)]cos2 l'I
1,2 8A3 2
(10-12)
+ [eilQ _ eil(Q_zu)]sinz-% 1}sin 1,
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1 .
C2 2(t) = lﬁlg ei21(9+u)cos4 % I
’ 24
+os
+ 2e'21gsin2 %’I cos2 %—I (10-13)

+ 71 —
+ e—21(Q u)sina %—I

Next, let us assume that the (Eulerian) angle 6 between the
instantaneous position of the space and body axes z and 2z' be
zero, and (ignoring, for the moment, the phenomena of the precession
and nutation) that the body axes x',y' rotate about the fixed =z = z'

axis with a uniform angular wvelocity w, If so, however, it follows

that
Q=+ @ t; (10-14)

the upper or lower sign referring to direct or retrograde rotation,
respectively. Moreover, in accordance with the laws of elliptic motion,
the true longitude u can be expanded in a Fourier series of the time
t in the form

u=w+v

(10-15)

= o + nt + 2e sin nt + % ezsin 2nt +ree,

where « denotes the longitude of the pericenter (i.e., the angular
distance between the nodal and apsidal lines); e, the orbital eccentricity;

and n, the mean daily motion of the disturbing body.

In Section VII we have seen that the time functions Ci .(t) enter
’

our problem through the boundary condition (7-23), not as such, but through
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their time derivatives. If we differentiate now equations (10-11) -
(11-13) with respect to the time we find that (for comstant a) the
second~harmonic term Pz(cos 0) in VT alone will give rise to the

following five pairs of fundamental frequencies in the disturbing

function:

+Q,
+ 20,
+ 24,
£ (Q * 20),
+2(0 % W),

where, by a differentiation of (10-14) and (10-15) with respect to the

time,

O =%, (10-16)

and

=3+ n(l + 2e cos nt + g-ezcos 2nt +eee). (10-17)
If m' were to stand for the mass of the Moon raising tides on
the Earth, those of the frequency 24 would regarded as "fortnightly
tides'"; and those associated with (wz * 24) as '"diurnal tides"; while
those of the frequency 2(wz + 1) would be termed "semi-diurnal''. On
the Moon tidally disturbed by the Earth the axial rotation is exactly
synchronized with the revolution--i.e., w, =n -~and, as a result, the

"fortnightly" tide becomes semi-diurnal while the "diurnal" tide will of

course last a month; but the "semi-diurnal" becomes weekly (i.e.,
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Vith a period of one—quarter of the month). The solar tides on the

Moon will occur in accordance with a similar s€heme--except that, in
this case, w, ~as defined by (10-14) continues to be identical with
the mean daily motion of the Moon, the quantity n in (10-15) refers

to the mean daily motion of the Sun.

A glance at the right-hand side of equation (10-7) reveals that
most tides invoked by the individual terms of the disturbing function
arise in connection with a finite inclination I of the orbital plane
of the disturbing body to the equator of the distorted configuration—--
an angle which is equal to 6°41' for the distortion of the Moon by
the Earth, and 1°32' for its distortion by the Sun. If 1 were zero
and the orbit of the disturbing body circular, only "semi-diurnal" tides
of frequency 2(;mz + 1) would survive. 1If, however, e > 0, the
variation of the radius vector A_3 in VT would--to the first power

in orbital eccentricity--give rise to three new "diurnal' terms of

frequencies

w+n_(I),
z
L

w - 3n + w,
z

and two "semi-diurnal" terms with frequencies

L
20 - N T oW,
z

20 - 3n + w3
z
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all of which will possess coefficients factored by the eccentricity e,
the mean value of which for the lunar orbit around the Earth is equal to
0.0549 (and 0.01675 for the terrestrial orbit around the Sun),
fluctuating between 0.0432 and 0.0666 each month because of evection;
and this latter perturbation will, in turn, give rise to partial tides

with frequencies

£ e

ZU)Z - DQ"‘ Zno"‘

E
-

2wz - 3ne+ 2no -

where ng o denote the mean daily motions (as seen from the Moon) of the

Earth and of the Sun, respectively.

The number of partial tides associated with harmonics of orders
higher than the second in the disturbing potential VT’ or with coefficients
factored by higher powers of the orbital eccentricity, becomes so large that
no adequate account of them can be given in this place; and the reader must
be referred to appropriate literature (e.g., Poincaré, 1910; or Bartels,

1857j.
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